Integration / Magnet / Material Budget

Session conveners: William Brooks and Alexander Kiselev

EICUG "Miami" Zoom Meeting July 17 2020

Session outline

- AK: Central Detector integration topics + EicToyModel
- Yulia: Material budget + Far Forward detectors integration
- Renuka: Central Detector Solenoid design
- Discussion

EIC detector concepts

-> need to converge to a couple of well-defined configurations!

What goes into an EIC YR detector model?

- The concept driven by a set of physics goals
- The boundary conditions
 - Accelerator-driven ones (available space, vacuum system, other)
 - A particular solenoid model (geometry, field map & strength)
- A particular set of ancillary detector models in the IR region
- Individual sub-detector studies in GEANT (and/or beam tests)
- A particular set of the central detector components (or placeholders)
 - Tracker, Calorimetry, PID: GEANT4 geometry and codes, test beam data
- Fast smearing parameterizations for this particular model
 - eic-smear, other

...

What goes into an EIC YR detector model?

- •
- Physics studies for this particular model
 - using fast smearing tools (most likely)
 - using full GEANT simulations (less likely, but we will see)
- Other ingredients
 - DAQ concept, dead material description, ...
- A matching engineering model (to some level of detail)
 - -> apparently all these ingredients & efforts better be in sync

Integration WG meetings: joint discussions

PID & Tracking WGs

- What are the PID detector requirements for tracking?
- How should they be formulated (together?) in the fast smearing tools?
- https://indico.bnl.gov/event/8520/

PID & Calorimetry WGs

- Electron ID: how PID detectors can complement Calorimetry below 4 GeV/c?
- How PID detector material affects EmCal energy resolution?
- https://indico.bnl.gov/event/8896/

+ a complementary effort in the Complementarity WG

Integration WG meetings: topical discussions

Crossing angle:

-> all this is still in a wish list phase

- Kinematics
- High |η| acceptance asymmetry of the solenoid field
- Fiducial volume cut close to the beam pipe

Time of Flight:

- t₀ counter needed?
- Combined ToF detectors preferred (LGAD tracker, LAPPD mRICH, ...)?
- Finite bunch length effects: are they different at η ~0 and for the RPs?

• Detector projectivity of a 4π collider experiment

- Detector performance (mRICH, ...)
- Construction limitations (calorimetry, ...)
- Space limitations if "flat" and projective equipment is mixed in the endcaps
- What about ~4m long DIRC bars?

The actual topics and *priorities* should better be defined by the community!

How to connect some of the other "dots"?

- Despite a tremendous amount of work done within the WGs ...
- ... one can easily identify a number of places with a lack of sync

escalate & fun4all; migration process

Tracker, PID &
Calorimetry
detectors in GEANT

1-st & 2-d IR

EIC detector & greenfield solenoid design

Physics simulations & engineering design

Ideal detectors & services / support

 $|\eta|$ <4.5 & reality

Space available for detectors & IR vacuum chamber

-> establishing a unified "environment backbone" must be important

EIC Toy Model

- A tool to model & generate EIC Central Detector "templates"
- https://github.com/eic/EicToyModel/

Create a model Save it as a .root file Import in GEANT

- GEANT application: import .root file and create volumes on the fly
- Engineering effort: use the same CAD model exported as a STEP file

A couple of valid questions to this cartoon

- If nominal IP stays at 0.0, is 1.0 m space for the RICH really ok?
- If solenoid axis is aligned with the electron beam line, is the high |η| azimuthal asymmetry in the hadron endcap acceptable?

$ \eta $ = 3.00	η = 3.50	$ \eta $ = 4.00	η ~ 4.38	η = 4.50
~99.5 mrad	~60.4 mrad	~36.6 mrad	25.0 mrad	~22.2 mrad

EIC Toy Model: quick start

- Minimal overhead to create and modify a 2D cartoon (ROOT scripting)
- If your system has git, a C++ compiler, a modern cmake, X11 and a working ROOT installation, grab the following lines and execute them in a terminal:

```
# Make sure thisroot.(c)sh was sourced!
git clone https://github.com/eic/EicToyModel.git
cd EicToyModel && mkdir build && cd build
# You may also need to replace 17 by 11 in the below line
cmake -Wno-dev -DCMAKE_CXX_STANDARD=17 ..
make -j2
root -l ../scripts/EIC-IR1-XX-v00.C
```

Chances are you will see a TCanvas similar to the one on the previous slide

Help the EIC software environment - send us your bug report

Edit EIC-IR1-XX-v00.C according to your preferences, re-run, tune the configuration, see next slide

EIC Toy Model: quick finish

- -> can we find a few dozens of volunteers, willing to participate in the decision on the YR EIC detector configuration(s):
- Try the five lines from the previous slide out, while this boring talk goes on
- Play around with the vertex / barrel / endcap composition (make sure you understand the boundary conditions; ask if not sure)
- Send your configurations (.root + .png) to the YR conveners
- We digest the proposals, make yet another round through the WGs, and say by August,1 we fix a couple of configurations for the YR purposes

EIC Central Detector partitioning

The same model in all cases

Engineering effort: from Temple to Berkeley

These renderings will be in sync with the 2D cartoons and the GEANT detector shown on the previous slide